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Abstract: Environmental and human health are threatened by anthropogenic heavy metal discharge
into watersheds. Traditional processes have many limitations, such as low efficiency, high cost,
and by-products. Photocatalysis, an emerging advanced catalytic oxidation technology, uses light
energy as the only source of energy. It is a clean new technology that can be widely used in the
treatment of organic pollutants in water. Given the excellent adaptability of photocatalysis in
environmental remediation, it can be used for the treatment of heavy metals. In this comprehensive
review, the existing reported works in relevant areas are summarized and discussed. Moreover,
recommendations for future work are provided.
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1. Introduction

Heavy metals are defined as metals with relatively high densities (metals where the
density is usually greater than 5 g/cm3), high atomic weights, and high atomic numbers.
Heavy metals pose a great threat to the ecosystem, which, in turn, affects human health.
The presence of heavy metals, such as mercury, lead, copper, nickel, cadmium, or arsenic,
can accumulate in the human body, causing organ failure or cancer and can severely
endanger human health. In addition to direct health effects, the heavy metal pollution in
in water bodies and the atmosphere can also lead to the poisoning of animals and plants,
resulting in reduced crop yields, a shortage of food and water sources, ecological balance,
and biodiversity damage. This would further induce large economic losses and disturb
geographical and ecological balance because they are difficult to transform or degrade
into harmless substances [1,2]. The common uses and health effects of several heavy
metal elements are summarized in Table 1. Therefore, the proper disposal of heavy metal
pollutants is imperative.

Photocatalysis is a popular technology among these new advanced oxidation technolo-
gies and exhibits promise in various areas [3–7]. Figure 1 illustrates a schematic diagram
of the basic principle of the photocatalytic process. Generally, photocatalysts have semi-
conductor structures. When the semiconductor material is irradiated by light, electrons
(e−) located in the valence band may jump to CB and may leave a positively charged hole
(h+) on the VB if the energy of a photon in the incident light is greater than or equal to the
bandgap energy between the semiconductor valence band (VB) and the conduction band
(CB). This pair of h+ and e− can, respectively migrate to the surface of the semiconductor
to undergo a series of oxidation and reduction reactions, which are embodied in the conver-
sion of different valence states in the treatment of heavy metals [8–10]. In the photocatalysis
process, the most essential limiting factors are the high energy requirements of the incident
light caused by the wide bandgap and the easy recombination of photogenerated carriers
(e− and h+). TiO2, the most typical photocatalyst, has received the most extensive research.
However, its wide bandgap only responds to UV light [11–13]. Hence, more photocatalysts
with suitable and efficient bandgaps have been developed and used, such as Bi-based
catalysts [14], C3N4 [15], and ZnO [16]. At present, there have been many active reports
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on photocatalysis in organic wastewater treatment [17], water splitting for hydrogen and
oxygen production [18], and nitrogen fixation [19]. Since photocatalysis does not require
additional energy input besides light, the active species that are produced have good redox
capabilities and do not produce additional pollution [20]. It is highly feasible to use it for
redox in water treatment.
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Figure 1. Schematic diagram of photocatalytic treatment of heavy metals.

Table 1. Health effects of exposure to several heavy metal elements (Adapted from [21]).

Heavy Metals Use/Exposure Health Effects
Maximum

Contamination Level
(WHO *) [22]

Chromium (Cr) Electroplating/Lather tanning/
paint industry Respiratory cancers 50 ppb

Zinc (Zn) Mining/manufacturing Metal fume fever/restlessness /

Cadmium (Cd) Electroplating/pigment/plastic/
polymerization industry Bone damage/nephrotoxic effects 3 ppb

Mercury (Hg) Pesticides/chlorine-alkali/paint/
petrochemical industry

Dyslexia/neurobehavioral
disorders/intellectual retardation/attention

deficit hyperactivity disorder
1 ppb

Nickel (Ni) Electroplating/mining/paint industry Chronic bronchitis/cancers of the lungs and
nasal sinus/decreased lung function /

Platinum (Pt) Mining/catalytic converter Platinosis/allergic reactions/respiratory
hypersensitive reaction /

Arsenic (As) Mining/wood preservative/biocides Skin cancers/liver tumours/acute
poisoning/gastrointestinal issues 10 ppb

(* WHO—World Health Organization; ppb—parts per billion).

2. Traditional Heavy Metal Treatment

Typical industrial methods employed in wastewater treatment, such as adsorption,
chemical precipitation, ion exchange, ozonation, biological methods, and electrochemical
methods activated by carbon, can hardly reduce the metal concentration in water to within
the regulatory standards effectively [23]. This is because there is a considerable number of
heavy metals in water that are complexed with organic chelating agents that come from
textile, nuclear, and electroplating sources. With copper as an example, the adsorption
efficiency is 49.3% of the original under competitive chelation with EDTA [24]. Figure 2
presents a schematic diagram of the most typical electrochemical water treatment tank. Its
complete removal requires the assistance of other technologies, though it can effectively
oxidize and reduce heavy metals. Moreover, the requirements of electrochemical treatment
on equipment parameters and the huge power consumption also cannot be underestimated.
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Metals can be precipitated by the addition of coagulants such as alum, lime, alum
salts, and other organic polymers. This method is used by almost three-quarters of plating
companies. Among them, the most common precipitation methods include sulphide,
sodium hydroxide, and carbonate methods. However, the major disadvantage of this
process is the large amount of toxic sludge that is produces [26].

Additionally, there are some more processes that can be used to complete heavy metal
treatment. Nonetheless, they have their defects, which are summarized in Table 2.

Table 2. Traditional heavy metal processing techniques and their drawbacks.

Techniques Drawbacks Ref.

Direct adsorption Inefficient in the presence of ligand [24]
Chemical precipitation Inefficient in the presence of ligand and potential pollution [26]

Ozonation Difficulties in separation and potential contamination [23]
Ultrafiltration Sludge generation [27]
Ion-exchange High cost and partial removal of some ions [28]

Reverse osmosis High cost [29]

Electrowinning Many equipment restrictions, large investment and continuous
power input demand [30]

Carbon adsorption High cost and low adsorption rates of water-soluble components [31]
Phytoremediation Time-consuming and difficult to regenerate plants [32]

The good redox ability of photocatalytic technology and the performance and adapt-
ability in the treatment of organic pollutants in water [33] enable it to be used for the
recovery of heavy metals. Its main advantage is that it does not require energy input other
than light energy, which is different from many traditional processes and is beneficial
to its continuous operation [34]. In photocatalytic redox, no polluting intermediates are
produced. This is another important advantage. This environmentally friendly feature is
consistent with the purpose of water treatment [35]. Finally, photoreactions can be adopted
to deposit heavy metals that are easily reduced on the surface of the catalyst in the form of
solids to achieve the effect of direct separation from the solution [36]. These characteristics
of photocatalysis are not available in many traditional heavy metal processing techniques.

3. Photocatalytic Heavy Metal Treatment

As mentioned above, the unique advantages of photocatalysis equip it with great
potential in the treatment of heavy metals [11,14,34,37]. Therefore, it has also attracted
the attention of many researchers [38–49]. Some reported examples of the photocatalytic
treatment of heavy metals are provided in Table 3. The specific situations of different heavy
metals in photocatalytic treatments are detailed as follows.
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Table 3. Overview of applications of photocatalytic heavy metal treatment.

Photocatalyst Heavy Metal Redox Products Light Type Efficiency Irradiation
Time Ref.

Porous BNNSs/TiO2 Cr(VI) Cr(III) Simulated solar light
and visible light 99% and 99% 70 min and

80 min [50]

TiO2 hollow sphere Cr(VI) Cr(III) UV light 0.0867 min−1 80 min [51]

TiO2 Cr(VI) Cr(III) Visible light 100% (formic acid
as electron donor) 80 min [52]

TiO2 nanotube
arrays/Ag-AgBr Cr(VI) Cr(III) Solar light 58.63% 180 min [53]

CdS/TiO2 Cr(VI) Cr(III) Visible light 2.14 × 10−2 min−1 180 min [54]
ZnTiO3/Zn2Ti3O8/ZnO Cr(VI) Cr(III) Full spectrum light 47% 150 min [55]

ZnO–graphene Cr(VI) Cr(III) UV light 98% 240 min [56]
Ag/ZnO@CF Cr(VI) Cr(III) Full spectrum light 71.82% 210 min [16]

PW12/CN@Bi2WO6 Cr(VI) Cr(III) Visible light 98.7% 90 min [57]
g-C3N4/diatomite

composites/Ag/AgCl Cr(VI) Cr(III) Visible light 7.4 × 10−2 min−1 45 min [58]

Nb2O5 Cr(VI) Cr(III) Full spectrum light 90% 120 min [59]
ZrO2 Cr(VI) Cr(III)/Cr UV light About 100% 90 min [60]

Iron(III) cross-linking
alginate hydrogel beads Cr(VI) and As(III) Cr(III) and As(V) Full spectrum light 90% and 100% 150 min [61]

Cellulose
acetate/chitosan/single

walled carbon nan-
otubes/ferrite/titanium

dioxide

Cr(VI) and As(V) Cr(III) and As UV light 0.0925 and 0.0896
min−1 60 min [62]

BiOI As(III) As(V) Natural light 1 mg/L to 10 µg/L 3 h [63]
TiO2 As(III) As(V) UV light About 100% 30 min [64]

TiO2-ZrO2 Cu(II) and Cr(VI) Cu and Cr(III)/Cr UV light 96.29 and 99.17% 630 min [65]

TiO2/Alg/FeNPs Cr(III), Cu(II) and
Pb(II) Cr, Cu and Pb UV light 98.6%, 98.4% and

99.5% 120 min [66]

α-Fe2O3/g-C3N4 Hg(II) Hg Visible light 90% 60 min [67]
BiOI/BiOCl Hg HgO/Hg(II) Visible light 72.4% 50 min [68]

CeO2/BiOIO3 Hg HgO Visible light 86.53% 30 min [69]
BiOIO3/MoS2/C500 Hg HgO UV light 78.32% 70 min [70]

Ag/TiO2

Cd(II), Ni(II),
Zn(II), Mn(II) and

Cu(II)

Cd, Ni, Zn, Mn
and Cu UV light 100, 96, 65.13, 58.22

and 56.20% 120 min [71]

NiFe2O4-Pd Pb(II) and Cd(II) Pb and Cd Full spectrum light 1.4 × 10−1 and 0.86
× 10−1 min−1 60 min [72]

Chitosan/Ag Cu(II), Pb(II) and
Cd(II) Cu, Pb and Cd Natural sunlight

1.10 × 10−4, 1.4 ×
10−4 and 1.5 × 10−4

mol dm−3s−1
240 min [73]

SnO2 nanoparticles Co(II) Co UV light 94% 60 min [74]

3.1. Chromium (Cr)

Chromium is the most studied and most typical metal in heavy metal removal studies.
It is a metal with numerous industrial and technological applications in fields such as
electroplating, the textile industry, wood preservation, and metallurgy. The production of
wastewater containing chromium ions is inevitable with the use of chromium. Cr(VI) ions
have been discovered to be more toxic than Cr(III) ions. Compared to Cr(III), which is more
thermodynamically stable, long-term exposure to Cr(VI) can damage the nasal septum,
cause lung cancer, and result in skin ulcers [75]. Among heavy metal ions, the treatment of
Cr(VI) ions is the most studied. Some works have been published on the photocatalytic
reduction of Cr(VI) using TiO2-, ZnO-, CdS-, and ZnS-based catalysts [16,50–62,65].

In 2005, Tuprakay et al. successfully photo-reduced Cr(VI) by using immobilized TiO2
under a UV light intensity of 171 W/m2 in 32 h. The Cr(VI) adsorption followed first-
order kinetics, while the reduction exhibited zero-order kinetics [76]. Five years later, Idris
et al. observed that the initial concentration of the Cr(VI) present before photoreduction
plays a crucial role in determining its removal efficiency. At an equilibrium state, the
removal efficiency of Cr(VI) at initial concentrations of 25, 50, 75, 100, 125, and 150 mg/L
was revealed to be 100%, 100%, 100%, 100%, 70%, and 70% in 100 min, respectively. A
further investigation indicates that the percentage adsorption of Cr(VI) decreased with
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the increasing initial Cr(VI) concentration. Moreover, this experiment was conducted in
sunlight with the use of magnetically separable photocatalyst beads, allowing it to be
achieved in less time [77]. The photocatalytic reduction of Cr(VI) is feasible under visible
light. Dye-photosensitized TiO2 samples successfully reduced Cr(VI) under visible light.

Di Iorio et al. reported a high efficiency in Cr(VI) reduction by using alizarin red
chelated to TiO2. This was slightly dependent on the Cr(VI) concentration and was in-
dependent of the photon flux and the irradiation wavelength [78]. At a pH of 2, a rapid
reduction of Cr(VI) was observed when visible light was irradiated on TiO2 coated with
hydroxyl aluminium tricarboxymonoamide phthalocyanine (AITCPc) in the presence of
4-chlorophenol (4-CP) as a sacrificial donor assisting in preventing the photobleaching of
AITCPc [79]. Figure 3a illustrates that the phthalocyanine (Pc) on the surface of TiO2 will
excite electrons and holes when photo-sensitized. This is different from the photocatalysis
principle of a single material. Moreover, they will migrate to CB and VB for their respective
oxidation and reduction reactions. Figure 3b presents the energy band change after the
coupling of TiO2 and AITCPc. It can also reflect the migration process of excited electrons
on AITCPc to the CB of TiO2. In this way, the coupling effect between different materials
can weaken the light utilization efficiency of the entire photocatalytic system, improve the
separation efficiency of photogenerated carriers, and enhance the overall reduction ability
and efficiency of the entire photocatalytic system to Cr(VI). On the excitation of the dye,
an electron was injected into the conduction band to promote Cr(VI) reduction [79,80]. In
these photoreduction studies, most of the Cr(VI) ions are reduced to Cr(III) ions, while only
a small part is reduced to Cr atoms [60,65].

Cr(VI) + e− → Cr(V) (1)

Cr(V) + e− → Cr(IV) (2)

Cr(IV) + e− → Cr(III) (3)

Cr2O7
2− + 6e− + 14H+ → 2Cr3+ + 7 H2O

(
E0 = +1.33 V

)
(4)

The photocatalytic treatment of Cr(VI) is a complete photoreduction process, which is
largely affected by the following three factors:

1. A low pH that favors the net reaction in Equation (3); however, neutral or alkaline
conditions favor the precipitation and immobilization of Cr(III) as the oxides or
hydroxides, contributing to enhancing separation even further [81–83].

2. The addition of organic compounds can accelerate the reduction of Cr(VI) by acting
as hole or ·OH scavengers [84].

3. Cr(VI) reduction is independent of molecular oxygen, especially at a low pH [65].
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In addition to Cr(VI), there are also studies on the removal of Cr(III) ions. Devagi et al.
treated wastewater containing three heavy metal ions: Cr(III), Cu(II), and Pb(II), at the
same time. They revealed that the adsorption in their system can significantly contribute to
the removal of heavy metal ions instead of photoreduction [66].

3.2. Arsenic (As)

As another common heavy metal element, arsenic is highly toxic. This has been
demonstrated through the long-term drinking of arsenic-containing water causing var-
ious cancers [64]. In addition to the risk of carcinogenesis and acute poisoning, some
investigations suggest that chronic arsenic poisoning can impact mental health and the
neurobehavior of children, causing long-term and irreversible social harm [85,86]. In an
aqueous solution, arsenic mainly exists in the forms of As(III) and As(V). Compared to
As(III), As(V) ions are less toxic and are more easily adsorbed and removed [87]. When
pH < 9, it mainly exists in the non-ionic form of H3AsO3, which is difficult to remove
by simple coagulation precipitation or adsorption because of the neutrality and difficult
ionization of H3AsO3 [88,89]. Recently, Zhang et al. effectively achieved the removal of
Cr(VI)/As(III) by applying iron(III) cross-linking alginate hydrogel beads (Fe-SA) as photo-
catalyst under simulated sunlight. The Fe-SA system used Fe(II) and CO2 as intermediates
while reducing Cr(VI) and oxidizing As(III) by the photoinduced ligand to metal charge
transfer under UV light and adsorbing them (Figure 4). This efficient synergistic system
enables the two heavy metals to reach more than 80% in a wide pH range (3–7). In this
study, Cr(VI) was reduced to Cr(III) ions, and As(III) was oxidized to As(V) ions. Then,
they were adsorbed or settled, allowing them to be removed from the water [61].

Photocatalysis offers a low-cost alternative in treatments to remove arsenic from
wastewater. Meichtry et al. impregnated the walls of PET plastic bottles with TiO2, which
is the most typical and most commonly used photocatalyst. As(III) solutions of 1000 µg/L
at a pH of 7.8 were placed in the bottles and were irradiated by UV light for 6 h; finally,
a removal efficiency of 80–86% was recorded for arsenic; this process could be repeated
up to three times without any loss of efficiency [90]. The removal efficiency of 94% was
recorded in the photooxidation of As from well water samples (taken from Las Hermanas,
Santiago del Estero Province, Argentina). This was performed under solar irradiation with
the addition of FeCl3 at the end of the experiment. It was discovered to be within the limits
of the World Health Organization (WHO).
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Simultaneously, there have also been explorations on the reduction and removal of
As(V) [62]. Research demonstrates that As(V) can be reduced in the dark by accumulated
electrons through the UV irradiation of TiO2 nanoparticles in alcohol. The accumulation of
electrons and their participation in the reduction of As(V) was detected as Ti(III) by UV-vis
spectrophotometry [91,92].

3.3. Mercury (Hg)

The ingestion of mercury by organisms can cause permanent enzyme inactivation,
leaving a devastating effect on metabolic functions [93]. Unlike other heavy metal forms
of pollution, mercury is liquid at room temperature. The flow properties of mercury
liquid and steam can significantly boost the permeability and scope of pollution. In cases
where ions have similar toxicity to other heavy metals, the elemental form of mercury also
has strong toxicity and diffusivity. Thus, Hg(0) and Hg(II) have different photocatalytic
treatment methods.

Chen et al. revealed that Ag(I), Pb(II), Hg(II), Cr(VI), and Fe(III) can be reduced by
photocatalysis after 65 min of irradiation using TiO2 as the photocatalyst, with a removal
efficiency of 99.7%, 27.2%, 70%, 79.1%, and 100%, respectively [94]. Kadi et al. employed
α-Fe2O3/g-C3N4 to reduce Hg(II) in water under visible light. Within 60 min, 100 mg/L of
Hg(II) was completely converted [67]. The photocatalyst adopted in their study exhibited
good activity in the photoreduction process and could be used to reduce other heavy metal
ions. Regarding mercury ions, simple reduction is not enough for the removal of heavy
metal elements. After the mercury ions are reduced to elemental mercury, adsorption may
be an indispensable part of this process.

Due to its low water solubility and high volatility, Hg(0) is generally considered more
difficult to remove than Hg(II). Several reports have verified that Bi-based photocatalysts
show good activity in Hg(0) removal [69,70]. The BiOI/BiOCl microflowers prepared
by Sun et al. can effectively photocatalyze oxidation and trap Hg in the gas phase [68].
Different from ordinary heterostructures, the unique multi-level charge transport path of
this microflower-like BiOCl/BiOI alternate arrangement structure equips it with better
charge transport and photo-generated carrier separation capabilities. The mechanism
diagram is illustrated in Figure 5. The experimental results suggest that the Hg removal
rate of this microflower BiOCl/BiOI is as high as 72.2%, which is more than four times the
efficiency of pure BiOCl and BiOI.
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To sum up, it is a more feasible and reasonable treatment to oxidize the elemental
state of Hg to Hg(II) and to then remove it in the form of HgO.

3.4. Other Heavy Metals

Moreover, there are many kinds of heavy metal elements that are potentially harmful
to the environment. These are not as typical as Cr(VI), nor are they as special as Hg.
Considering that simple photoreduction combined with adsorption can effectively treat
these heavy metals, they are classified into the same category. Cadmium (Cd), lead (Pb),
copper (Cu), zinc (Zn), manganese (Mn), nickel (Ni), and cobalt (Co) are also common
heavy metals. They will threaten environmental safety and human health when existing in
the form of ions in the solution.

Wahyuni et al. explained that Cr(VI), Cu(II), and Cd(II) can be reduced photo-
catalytically, while Pb(II) ions preferably oxidize than reduce because of their negative
reduction potential value.

Cu2+ + 2e− → Cu0
(

E0 = +0.34 V
)

(5)

Cd2+ + 2e− → Cd0
(

E0 = −0.403 V
)

(6)

Pb2+ → Pb4+ + 2e−
(

E0 = −0.67 V
)

(7)

In the removal of heavy metals, the influence of pH is a critical factor influencing the
sedimentation of ions. According to reports, the optimum pH is 5 in such a system. At
this pH, the removal efficiency of 15%, 40%, 45%, and 75% was achieved for Cd(II), Pb(II),
Cu(II), and Cr(VI), respectively. At a more alkaline pH (pH 13), Cr(VI) is hardly removed
effectively, while the removal rate of Cd(II), Pb(II), and Cu(II) is close to 100%.

4. Discussion and Outlooks

Photocatalytic removal of heavy metals is an essential part of photocatalytic water
treatment. At present, the removal of various heavy metal elements using photocatalytic
technology has been extensively studied. In this study, the typical works of this research
topic are summarized. Although this process has presented advantages, there are still obsta-
cles in its future applications. Possible solutions to existing problems and recommendations
for future work are suggested as follows:

1. Low photocatalytic efficiency: At present, the efficiency of the photocatalytic reaction
remains low. This is reflected not only in the removal of heavy metals but also in
other photocatalytic processes. This situation is expected to be improved as more
new materials presenting higher catalytic activity and higher stability efficiency or
modification methods (such as doping and morphology control) that can improve the
photocatalytic activity and stability of existing materials are proposed.

2. Low light utilization efficiency: Although natural solar energy resources are extremely
abundant, the current light energy that can be utilized by photocatalysis is still very
low. From one perspective, this is caused by the poor response of the photocatalyst
to visible light. From another perspective, it is related to the current photocatalytic
system. The former can be improved through the improvement of materials while the
latter may require breakthroughs in reactor design.

3. Continuous operation method: It is difficult to remove heavy metals through simple
oxidation or reduction. It is a common photocatalytic treatment method to convert
difficult-to-treat heavy metal atoms or ions into a form that is easier to adsorb or settle
and before removal. Its practical application would lie in the organic combination
of the catalytic process and the adsorption/sedimentation process to ensure that the
entire process has better overall continuity.

4. No standard platform: Although there is a WHO standard for the removal of heavy
metals, this standard has not been widely adopted, especially in photocatalysis re-
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search. Moreover, the existing research on the use of light sources and other aspects of
the divergence is sufficient. To date, no standard platform can use a unified standard
to evaluate the photoactivity of different photocatalysts in different laboratories. The
establishment of this standard is necessary and urgent.

5. Technology coupling: With the current efficiency of photocatalysis, it is significantly
difficult to complete the task of water treatment on its own. Generally, the combination
of different technologies is effective. It may be a good choice to organically combine
the photocatalytic system with the existing water treatment technology.

Current research has demonstrated that photocatalytic technology can play a role in
the removal of heavy metals. However, there are still many problems in this process, such
as low efficiency, difficult separation, and difficult catalyst regeneration. Therefore, this
advanced technology requires further development.
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